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INTRODUCTION 
 
The use of familiar scenes in everyday life as analogous 
examples to illustrate abstract mathematical theorems is a 
useful tool in facilitating students developing an intuitive feel 
for the subject at hand. These ideas are particularly useful for 
teaching information theory at the undergraduate level, where 
students generally lack the ability to decipher the physical 
meaning of equations, definitions, theorems, etc, on their own. 
Although presented within the context of teaching the subject 
on information theory, the ideas put forth in this article are 
general and may be applied to other subjects as well. 
 
A review of some basic concepts on information theory are 
initially given in order to make this article as self-contained as 
possible. This is followed with a detailed description on how 
analogies may be used to illustrate these concepts in the context 
of transmission through a discrete memoryless channel. The 
discussion then focuses on the use of analogies to illustrate a 
fundamental theorem in information theory, namely: the noisy 
coding theorem. In contrast to the analogies used, concerning 
the discrete memoryless channel, the analogies used to illustrate 
that theorem do not capture all of the pertinent physical 
interpretations that may be derived from the corresponding 
mathematical relations. Despite this, students generally still 
find the use of such analogies helpful in developing an intuition 
for the subject, as was observed in a recent survey conducted 
with an undergraduate information theory class for which such 
analogies were heavily used to explain abstract concepts. The 
results of this survey are summarised at the end of this article. 
 
PRELIMINARIES 
 
Consider the discrete random variable X with possible values 
x1, x2, …. The information content provided by the event X=xi 
having probability of occurrence P(X=xi) is defined as: 
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This is known as the self-information of the event X=xi. The 
average self-information of X is then the expected value of 
I(xi), ie: 
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This quantity is known as the entropy of X. In particular,  
if the output of a source can be characterised by X, then  
the average amount of information contained in an  
output symbol, or more formally, the entropy of the source,  
is H(X). Such a source is known as a discrete memoryless 
source.  
 
Consider another discrete random variable Y with possible 
values y1, y2, …. The information content provided by the event 
X=xi after having observed the event Y=yj is defined as: 
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This quantity is known as the conditional self-information of 
the event X=xi, given that the event Y=yj has occurred. The 
average conditional self-information of X, given Y, is then the 
expected value of I(xi|yj), ie:  
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This quantity is known as the conditional entropy of X, given  
Y.  
 
The information content provided by the occurrence of the 
event Y=yj about the event X=xi is defined as follows: 
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This quantity is known as the mutual information of the events 
X=xi and Y=yj. The average mutual information of X and Y is 
then the expected value of I(xi;yi), ie: 
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It can be shown that: 
 

0)|()();( ≥−= YXHXHYXI . 
 

Thus, if H(X|Y) is zero, then I(X;Y)=H(X). However, if: 
 

)()|(0 XHYXH ≤< , 
 

then  
 

)();(0 XHYXI <≤ . 
 

In particular, I(X;Y) = 0 when H(X|Y) = H(X). A more detailed 
treatment can be found in ref. [1]. 
 

THE DISCRETE MEMORYLESS CHANNEL 
 

A discrete memoryless channel is a channel wherein the current 
output symbol depends only on the current input symbol, the 
input and output symbols being characterised as discrete 
random variables. If X and Y are used to model the input and 
output, respectively, of such a channel, then H(X|Y) can be 
interpreted as the average amount of information about X that 
does not get through the channel. That is, H(X|Y) represents the 
average information loss about X. On the one hand, I(X;Y) 
represents the average amount of information about X that gets 
through the channel. Thus, the channel is noiseless when 
H(X|Y)=0, and noisy when: 
 

)()|(0 XHYXH ≤< . 

 
In particular, the channel is useless when H(X|Y)=H(X). 
 
These are typical statements found in textbooks on information 
theory. Analogies are now brought in. First, the above 
statements are summarised pictorially in Figures 1a to 1c.  
 
An analogy for the channel is a water pipe. The quantity H(X) 
is then the amount of water put through the pipe, I(X;Y) is the 
amount of water that goes out the other end of the pipe, and so 
H(X|Y) is the amount of water lost due to water leaking through 
perforations in the pipe, if any. A pipe with no perforations is 
analogous to the noiseless channel, while a pipe with 
perforations is analogous to a noisy one. In particular, a useless 
channel is analogous to a pipe where perforations are so severe 
that all the water that enters the pipe leaks out before reaching 
the other end. These analogies may further be used to give 
interesting intuitive justifications for relations, such as: 
 
       )()|(0 XHYXH ≤≤             (7) 
 
and  
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Figure 1: a) Noiseless channel (top); b): Noisy channel 
(middle); and c): Useless channel.  
 
An intuitive argument for the validity of the upper-bound in the 
first of the two relations above is that more water cannot be lost 
than what is put into the water pipe in the first place. Similarly, 
one cannot get out from one end of the pipe more water than 
what one puts in at the other end, thus giving an intuitive 
explanation for the upper-bound in the second relation. The 
lower-bounds in the above two relations are even more intuitive 
and so any further elaboration can be omitted. 
 
Undeniably, it is not always easy to find good analogies. In 
some cases, even the best analogy does not paint a complete 
picture. Nevertheless, even in such circumstances, an analogy 
can still shed intuitive light on the subject matter at hand. This 
is illustrated in the following section. 
 
THE NOISY CODING THEOREM 
 
Let the output of a discrete memoryless source be modelled by 
X. Suppose the source outputs a symbol every Ts seconds. Then 
the average information rate of the source is H(X)/Ts. Recall 
that if X and Y characterise, respectively, the input to and 
output from a discrete memoryless channel, then I(X;Y) is the 
average amount of information about X that gets through the 
channel. The maximum value of I(X;Y), denoted by C, is taken 
over all of the probability density functions of X. Assuming that 
the channel is used every Tc seconds, the channel capacity per 
unit time is the quantity C/Tc.  
 
Suppose that the source symbols are encoded using a code An 
of length n prior to transmission. Reliable communications can 
then be achieved if the probability that the decoder at the 
receiver makes an erroneous decision on what was transmitted, 
pe(n), can be made arbitrarily small.  
 
The noisy coding theorem states that if: 
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then, there exists a sequence of codes An and corresponding 
decoding schemes with an associated probability of decoder 
error pe(n), such that pe(n) tends to zero as n tends to infinity. In 
other words, the loss of information about X tends to zero as n 
tends to infinity.  
 
On the other hand, if: 
 

cs TCTXH //)( > , 

 
then pe(n) is bounded away from zero for all n. To put it 
differently, the loss of information about X is always greater 
than zero for all n. 
 
Analogously, H(X)/Ts could be considered as being the rate that 
one pours water down a funnel, and C/Tc denotes the maximum 
rate that it can be done, beyond which water starts to overflow 
from the top of the funnel, leading to a loss of water. This is 
depicted in Figures 2a and 2b. 
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Figure 2: a) Average information rate less than, or equal to, 
channel capacity per unit time (top); and b): Average information 
rate exceeding channel capacity per unit time (bottom). 
 
It is obvious that this water funnel analogy is somewhat lacking 
as it does not take n into account. Nevertheless, it still captures 
the essence of the theorem at hand (ie if the average 
information rate does not exceed the channel capacity per unit 
time, then an arbitrarily small loss of information about what is 
being transmitted is achievable; otherwise, this loss will forever 
be bounded away from zero). For this reason, it is still useful in 
helping students attain an intuitive feel for this fundamental 
result. 

Understandably, finding a suitable analogy to explain a concept 
may not always be easy. So when any analogy seems illusive, 
what next? This is a question that is addressed in the next 
section. 
 
INTUITIVE EXPLANATIONS WITHOUT ANALOGIES 
 
When a suitable analogy to explain a concept or theorem does 
not seem to exist, one could, with a bit of imagination, still 
come up with intuitive explanations. This is illustrated by 
invoking the noiseless source coding theorem.  
 
Suppose that the output of a discrete memoryless source, 
characterised by X, is encoded symbol-by-symbol, using a 
variable-length code A. Variable length code denotes an 
ensemble of variable-length vectors over some fixed alphabet, 
while symbol-by-symbol encoding means that by some 
functional mapping, indicated by, say, f, each distinct source 
symbol is mapped to a distinct element, ie codeword, of A. 
Furthermore, suppose that A is uniquely decodable. That is, by 
f −1, each distinct string of codewords is inversely mapped to a 
distinct string of source symbols. The abovementioned theorem 
states that there exists a uniquely decodable code, whose 
average codeword length L satisfies: 
 
        1)()( +<≤ XHLXH           (10) 

 
and that L is minimal among the average codeword lengths of 
all other uniquely decodable codes. An immediate consequence 
of this result is that there does not exist a uniquely decodable 
code of average codeword length less than the entropy of the 
source.  
 
How can this last statement be explained intuitively? One way 
is to argue that if a given source output contains x symbols of 
information, then at least x symbols are needed (over the same 
alphabet to represent that output).  
 
For example, consider the phrase United States of America  
as a source output. That output contains 24 letters (if the  
inter-word spaces are counted as well). Clearly, there are many 
redundant letters in that output, since only the three  
letters, USA, are needed to denote the United States of 
America. In fact, only two are needed, ie US. If each letter  
can be represented by one symbol of some fixed alphabet,  
then of the 24 corresponding symbols that can be used to 
represent that phrase, 22 are redundant, and so it can be said 
that the phrase only contains two symbols of information. 
Accordingly, only two symbols are required (from the same 
alphabet), but no less, in order to represent the source output – 
one symbol for the letter U, the other for S. One symbol alone 
can only capture U or S, but not both, and there is no way of 
telling that U or S alone actually refers to the United States of 
America.  
 
STUDENT FEEDBACK 
 
Thus far, it has been illustrated how analogies and intuitive 
explanations may be used to facilitate learning in an 
information theory class. It is natural to ask at this juncture how 
effective this method is. So as to get some feel for it, students  
in an undergraduate information theory class were asked to 
complete a feedback form that contained the following three 
statements: 
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• Statement 1: I find the need to develop an intuitive feel for 
the subject necessary, as understanding the subject from a 
mathematical point of view alone is insufficient. 

• Statement 2: I find that the analogies and intuitive 
explanations offered in class to illustrate difficult concepts 
helped me a lot in developing an intuitive feel for the 
subject. 

• Statement 3: I prefer more time be spent constructing 
proofs to theorems as opposed to analogies or intuitive 
explanations. 

 
Students were asked to respond based on a scale of 1 to 5, 
where  
 
• 1 means that they strongly disagree; 
• 2 means that they somewhat disagree; 
• 3 means that they neither agree nor disagree; 
• 4 means that they somewhat agree; 
• 5 means that they strongly agree. 
 
The responses of the 108 students who participated in this 
survey are summarised in Figures 3 to 5. 
 
As can be seen from the three charts, the vast majority of 
students who participated in the survey value having an 
intuitive feel for the subject at hand.  
 
Furthermore, the large majority of these students, although  
to a lesser degree, are of the opinion that the use of analogies 
and intuitive explanations help them greatly in developing  
their intuition for the subject. In fact, the majority are not in 
favour of spending more time on formulating rigorous 
mathematical proofs and less on analogies and intuitive 
explanations. 
 
It should be further highlighted that some of the analogies 
presented in this class did not capture the entire picture painted 
by the corresponding mathematical relations, such as the water 
funnel example described above. As such, it is interesting to 
note that the majority of students in that class still felt that the 
use of analogies facilitated the development of an intuition for 
the subject. This supports the author’s claim that analogies that 
do not capture all of the physical interpretations of the 
corresponding mathematical relations, but rather shed intuitive 
light on the concepts at hand.  
 
CLOSING REMARKS 
 
In this article, the author has discussed the use of analogies 
with the objective of helping students develop an intuitive feel 
for the subject being studied. Based on the results of the survey 
conducted, students find this method effective in achieving 
such a learning outcome. 
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Figure 3: Responses to Statement 1. 
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Figure 4: Responses to Statement 2. 
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Figure 5: Responses to Statement 3. 
 
However, it is important to note that the mathematical rigour of 
the subject need not be compromised, so long as this technique 
is employed to supplement, rather than replace, the standard 
theorem-proof teaching approach.  
 
The proposed method of teaching is particularly well suited for 
a course in information theory offered as a cross-faculty 
module; as such, a class would typically contain students of 
diverse academic background, eg students from the arts or 
science faculties, who may struggle with the abstract and 
mathematical nature of the subject, and hence benefit from the 
use of more familiar analogies.  
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